
Role of sodium-glucose transporters in glucose
uptake of the intestine and kidney

Glucose is essential for energy production
in the living body; the glucose transporter
plays a critical role in various organs.
Glucose transporters are classified into
two families: facilitative glucose transport-
ers (GLUTs) and sodium-dependent
glucose transporters (SGLTs), through
which glucose is transported by facilitated
diffusion, and Na+/glucose are co-trans-
ported by an electrochemical gradient
across the membrane, respectively. Six
isoforms of the SGLT gene belong to the
SLC5 gene family and they consist of 15
exons (Table 1). All SGLT proteins have
14 transmembrane helices in topology.
SGLT1 and SGLT2 function as a glu-
cose/galactose transporter and a glucose
transporter across the membrane, respec-
tively. SGLT3 is not a transporter in
some species; for example, in humans, in
which SGLT3 is thought to be a glucose
sensor expressed in the enteric nervous
system and muscle, whereas the func-
tions of SGLT4, SGLT5, and SGLT6 are
not known.
SGLT1 is expressed mainly in the

intestine and kidney; SGLT2 is expressed
highly in the kidney (Figure 1). Recently,
Gorboulev et al.1 reported that SGLT1 is
expressed in the brush border membrane
(BBM) of the intestine, and that glucose
absorption across the BBM disappeared
in SGLT1-deficient mice, which indicates
that intestinal glucose absorption in the
intestine is mediated predominantly by
SGLT1.
Some studies found that SGLT1 is

expressed in incretin-secreting cells and
is involved in incretin secretion2,3. In
addition, it is reported that the SGLT
inhibitor, phrorizin, reduces incretin
secretion3. Incretin is the intestinal hor-
mone that is secreted on meal ingestion

and potentiates insulin secretion from
pancreatic b-cells in a glucose-dependent
manner. Gastric inhibitory polypeptide
(GIP) and glucagon-like peptide-1 (GLP-
1), the major incretins, are secreted from
K-cells in the proximal small intestine,
and from L-cells in the distal small intes-
tine and colon, respectively. Glucose, pro-
tein and fat all induce incretin secretions,
but fat especially induces GIP secretion
in human studies4. Gorboulev et al.1

reported that fat ingestion stimulates
both GIP and GLP-1 secretion in both
wild-type and SGLT1-deficient mice, but
that glucose does not in SGLT1-deficient
mice, clearly showing that SGLT1 plays a
critical role in incretin secretion in
response to glucose in vivo. Glucokinase,
sulfonylurea receptor 1 (SUR1), and
Kir6.2, which are associated with glu-
cose-induced insulin secretion in b-cells,
are reported to be expressed in both
K-cells and L-cells, suggesting that incre-
tin secretion is exerted by glucose metab-
olism in the cells. In contrast, it has been
reported that a-methyl-D-glucopyrano-
side, which is not metabolized in the
glycolytic pathway or tricarboxylic acid
cycle, induces incretin secretion5. In such
a case, membrane depolarization as a
result of sodium ion uptake with unmet-
abolizable glucose into the cell through

SGLT1 would be critical for incretin
secretion. However, the relative impor-
tance in incretin secretion of glucose
absorption from the lumen side and
from glucose metabolism in the cells
remains unclear.
In the kidney, glucose filtered in glome-

ruli is reabsorbed in proximal renal
tubules, and is not usually secreted in the
urine. However, when the blood glucose
level is over 160~180 mg/dL, glucose reab-
sorption exceeds reabsorption capacity
and glucose does appear in the urine.
SGLT1 is expressed mainly in the S2 and
S3 segments of the proximal renal tubules,
and reabsorbs one glucose molecule cou-
pled with two sodium ions. SGLT2 has
60% homology with SGLT1 and is highly
expressed in the BBM of the S1 segment
of the proximal renal tubules. SGLT2 has
a low affinity to glucose and reabsorbs one
glucose molecule coupled with one
sodium ion. It is thought that SGLT1 and
SGLT2 reabsorb 10 and 90% of filtered
glucose, respectively, in the kidney6. Con-
sidering that SGLT2 is largely involved in
glucose reabsorption and that SGLT2
expression is upregulated in the diabetic
rat7, inhibition of SGLT2 might well be a
new therapeutic approach to excrete
glucose into the urine and manage blood
glucose levels in type 2 diabetes mellitus
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Table 1 | Subtypes of human sodium-dependent glucose transporter and tissue distribution

SGLT family (gene) Function Tissue distribution

SGLT1 (SLC5A1) Glucose/galactose transporter Intestine, trachea, kidney,
heart, brain, testis, prostate

SGLT2 (SLC5A2) Glucose transporter Kidney, liver, thyroid, muscle,
heart

SGLT3 (SLC5A4) Glucose sensor? Intestine, testis, uterus, lung,
brain, thyroid

SGLT4 (SLC5A9) ? Intestine, kidney, liver, brain,
trachea, lung, uterus, pancreas

SGLT5 (SLC5A10) ? Kidney, cortex
SGLT6 (SLC5A11) ? Spinal cord, kidney, brain

SGLT, sodium-dependent glucose transporter.
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patients. To date, various SGLT2 inhibi-
tors have been developed for treatment of
type 2 diabetes mellitus. Interestingly,
Gorboulev et al. showed that SGLT1-
deficient mice lose just ~3% of the filtered
glucose into the urine, whereas SGLT2-
deficient mice lose ~60% of the filtered
glucose into the urine, suggesting that
wild-type mice do not use the maximal
transport capacity of SGLT1 under
normoglycemic conditions1. In diabetic
patients, the glucose concentration is
overwhelming in early proximal tubules
and is even more in the patients
with a SGLT2-specific inhibitor. In this

condition, SGLT1 transporter might be
performing at full capacity and minimizes
the effects of the drug. In this context,
SGLT1 inhibition might have therapeutic
potential. However, it might reduce incre-
tin secretion and induce side-effects, such
as diarrhea and polyurea, the main symp-
toms of glucose–galactose malabsorption
in patients with SGLT1 gene mutations.
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Figure 1 | Glucose absorption through sodium-dependent glucose transporter 1 (SGLT1) in
(a) an enterocyte and (b) an enteroendocrine cell, and (c) glucose reabsorption through SGLT1
and sodium-dependent glucose transporter 2 (SGLT2) in a proximal renal tubular cell. ADP,
adenosine diphosphate; ATP, adenosine triphosphate; GIP, gastric inhibitory polypeptide; GLP-1,
glucagon-like peptide-1; GLUT, glucose transporter; SUR1, sulfonylurea receptor 1; VDCC, voltage-
dependent calcium channel.
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